Saturday, September 19, 2009

Energy Signal


In signal processing, the energy Es of a continuous-time signal x(t) is defined as
E_{s} \ \ = \ \ \langle x(t), x(t)\rangle \ \  =  \int_{-\infty}^{\infty}{|x(t)|^2}dt

energy in this context is not, strictly speaking, the same as the conventional notion of energy in physics and the other sciences. The two concepts are, however, closely related, and it is possible to convert from one to the other:

E = {E_s \over Z} = { 1 \over Z } \int_{-\infty}^{\infty}{|x(t)|^2}dt
where Z represents the magnitude, in appropriate units of measure, of the load driven by the signal.

For example, if x(t) represents the potential (in volts) of an electrical signal propagating across a transmission line, then Z would represent the characteristic impedance (in ohms) of the transmission line. The units of measure for the signal energy Es would appear as volt2-seconds, which is not dimensionally correct for energy in the sense of the physical sciences. After dividing Es by Z, however, the dimensions of E would become volt2-seconds per ohm, which is equivalent to joules, the SI unit for energy as defined in the physical sciences.

As the names suggest, this classification is determined by whether or not the time axis (x-axis) is discrete (countable) or continuous. A continuous-time signal will contain a value for all real numbers along the time axis. In contrast to this, a discrete-time signal is often created by using the sampling theorem to sample a continuous signal, so it will only have values at equally spaced intervals along the time axis.

Difference Between Analog Signal and Digital Signal

Analog signals are continuous where digital signals are discrete. Anolog signals are continuously varying where digital signals are based on 0's and 1's (or as often said------- on's and off's). As an analogy, consider a light switch that is either on or off (digital) and a dimmer switch (analog) that allows you to vary the light in different degrees of brightness. As another analogy, consider a clock in which the second hand smoothly circles the clock face (analog) versus another clock in which the second hand jumps as each second passes (digital). Digital computers work with a series of 0's and 1's to represent letters, symbols, and numbers. In addition, numbers are represented by using the binary code (where only 0's and 1's are used).

Number Binary equivalent
1----------------------------- -----------------1
2----------------------------- ----------------10
3----------------------------- ----------------11
4----------------------------- ---------------100
5----------------------------- ---------------101
6----------------------------- ---------------110
7----------------------------- ---------------111
8----------------------------- --------------1000

and so on. So each number (that we are accustomed to, such as 5) is represented by 0's and 1's. Morse code uses dits (or dots) and dashes. Digital signals are similar to Morse code. The signal is either a dit or a dash for Morse code and it is either a 0 or 1 for digital. A series of these dits and dashes might represent SOS to a navy radio man, and a series of 0's and 1's might represent the question mark to a computer.

When an e-mail is sent that says "Hello Joe", Hello Joe doesn't mysteriously appear on Joe's computer. What is sent through the phone line is a series of 0's and 1's and Joe's computer "interprets" these into the words Hello Joe. If you type the letter A into your computer, it converts this A into 01000001. This 01000001 goes to Joe's computer and his computer interprets it as A. Each 0 or 1 is "bit" and the series of eight 0's and 1's is a byte. Well, that is about as simple as it gets and about as simple as I can state it.

Digital Signal

The term digital signal is used to refer to more than one concept. It can refer to discrete-time signals that have a discrete number of levels, for example a sampled and quantified analog signal, or to the continuous-time waveform signals in a digital system, representing a bit-stream. In the first case, a signal that is generated by means of a digital modulation method which is considered as converted to an analog signal, while it is considered as a digital signal in the second case.

Analog Signal

An Analog or analogue signal is any continuous signal for which the time varying feature (variable) of the signal is a representation of some other time varying quantity, i.e analogous to another time varying signal. It differs from a digital signal in terms of small fluctuations in the signal which are meaningful. Analog is usually thought of in an electrical context; however, mechanical, pneumatic, hydraulic, and other systems may also convey analog signals.


An analog signal uses some property of the medium to convey the signal's information. For example, an aneroid barometer uses rotary position as the signal to convey pressure information. Electrically, the property most commonly used is voltage followed closely by frequency, current, and charge.

Any information may be conveyed by an analog signal; often such a signal is a measured response to changes in physical phenomena, such as sound, light, temperature, position, or pressure, and is achieved using a transducer.

For example, in sound recording, fluctuations in air pressure (that is to say, sound) strike the diaphragm of a microphone which induces corresponding fluctuations in the current produced by a coil in an electromagnetic microphone, or the voltage produced by a condensor microphone. The voltage or the current is said to be an "analog" of the sound.

An analog signal has a theoretically infinite resolution. In practice an analog signal is subject to noise and a finite slew rate. Therefore, both analog and digital systems are subject to limitations in resolution and bandwidth. As analog systems become more complex, effects such as non-linearity and noise ultimately degrade analog resolution to such an extent that the performance of digital systems may surpass it. Similarly, as digital systems become more complex, errors can occur in the digital data stream. A comparable performing digital system is more complex and requires more bandwidth than its analog counterpart. In analog systems, it is difficult to detect when such degradation occurs. However, in digital systems, degradation can not only be detected but corrected as well.

A discrete signal or discrete-time signal is a time series consisting of a sequence of quantities. In other words, it is a time series that is a function over a domain of discrete integers. Each value in the sequence is called a sample.

Unlike a continuous-time signal, a discrete-time signal is not a function of a continuous argument; however, it may have been obtained by sampling from a continuous-time signal. When a discrete-time signal is a sequence corresponding to uniformly spaced times, it has an associated sampling rate; the sampling rate is not apparent in the data sequence, so may be associated as a separate data item.

Continuos Time Signal

Continuous-time signal is a varying quantity (a signal) whose domain, which is often time, is a continuum (e.g., a connected interval of the reals). That is, the function's domain is an uncountable set. The function itself need not be continuous. To contrast, a discrete time signal has a countable domain, like the natural numbers.

The signal is defined over a domain, which may or may not be finite, and there is a functional mapping from the domain to the value of the signal. The continuity of the time variable, in connection with the law of density of real numbers, means that the signal value can be found at any arbitrary point in time.

A typical example of an infinite duration signal is:

f(t) = \sin(t), \quad t \in \mathbb{R}

A finite duration counterpart of the above signal could be:

f(t) = \sin(t), \quad t \in [-\pi,\pi] and f(t) = 0 otherwise.


The value of a finite (or infinite) duration signal may or may not be finite. For example,

f(t) = \frac{1}{t}, \quad t \in [0,1] and f(t) = 0 otherwise,

is a finite duration signal but it takes an infinite value for t = 0\,.

In many disciplines, the convention is that a continuous signal must always have a finite value, which makes more sense in the case of physical signals.

For some purposes, infinite singularities are acceptable as long as the signal is integrable over any finite interval (for example, the t − 1 signal is not integrable, but t − 2 is).

Any analogue signal is continuous by nature. Discrete signals, used in digital signal processing, can be obtained by sampling and quantization of continuous signals.

Continuous signal may also be defined over an independent variable other than time. Another very common independent variable is space and is particularly useful in image processing, where two space dimensions are used.

What is System?

Organized, purposeful structure regarded as a 'whole' consisting of interrelated and interdependent elements (components, entities, factors, members, parts etc.). These elements continually influence one another (directly or indirectly) to maintain their activity and the existence of the system, in order to achieve the common purpose the 'goal' of the system. All systems have (a) inputs, outputs, and feedback mechanisms, (b) maintain an internal steady-state (called homeostasis) despite a changing external environment, (c) display properties that are peculiar to the whole (called emergent properties) but are not possessed by any of the individual elements, and (d) have boundaries that are usually defined by the system observer. Systems underlie every phenomenon, and are everywhere one looks for them. They are limited only by the observer’s capacity to comprehend the complexity of the observed entity, item or phenomenon. Every system is a part of a larger system, is composed of sub-systems, and shares common properties with other systems that help in transferring understanding and solutions from one system to another. Systems obey rules which cannot be understood by breaking them into parts, and stop functioning (or malfunction) when an element is removed or altered significantly. Together, they provide a coherent and unified way of viewing and interpreting the universe as a meta-system of interlinked wholes, and of organizing our thoughts about the world. Although different types of systems (from a cell to the human body, soap bubbles to galaxies, ant colonies to nations) look so very different on the surface, they have remarkable similarities. At the most basic level, the systems are divided into two categories: (1) Closed systems: theoretical constructs which have solid boundaries and where only the components within the system are assumed to exist in a self-sufficient state. All other influences or variables from outside the system are considered to be non-existent or insignificant for the purpose of the system analysis. (2) Open systems: the 'real world' systems that have permeable boundaries through which they continually exchange energy, material, and information with their external environment the larger system in which they exist. Different systems methodologies (such as systems dynamics and systems thinking) classify systems differently.

What is Signal?

In electronics, a signal is an electric current or electromagnetic field used to convey data from one place to another. The simplest form of signal is a direct current (DC) that is switched on and off; this is the principle by which the early telegraph worked. More complex signals consist of an alternating-current (AC) or electromagnetic carrier that contains one or more data streams.

Data is superimposed on a carrier current or wave by means of a process called modulation. Signal modulation can be done in either of two main ways: analog and digital. In recent years, digital modulation has been getting more common, while analog modulation methods have been used less and less. There are still plenty of analog signals around, however, and they will probably never become totally extinct.

Except for DC signals such as telegraph and baseband, all signal carriers have a definable frequency or frequencies. Signals also have a property called wavelength, which is inversely proportional to the frequency.

2) In some information technology contexts, a signal is simply "that which is sent or received," thus including both the carrier (see 1) and the data together.

3) In telephony, a signal is special data that is used to set up or control communication.In electronics, a signal is an electric current or electromagnetic field used to convey data from one place to another. The simplest form of signal is a direct current (DC) that is switched on and off; this is the principle by which the early telegraph worked. More complex signals consist of an alternating-current (AC) or electromagnetic carrier that contains one or more data streams.

Data is superimposed on a carrier current or wave by means of a process called modulation. Signal modulation can be done in either of two main ways: analog and digital. In recent years, digital modulation has been getting more common, while analog modulation methods have been used less and less. There are still plenty of analog signals around, however, and they will probably never become totally extinct.

Except for DC signals such as telegraph and baseband, all signal carriers have a definable frequency or frequencies. Signals also have a property called wavelength, which is inversely proportional to the frequency.

2) In some information technology contexts, a signal is simply "that which is sent or received," thus including both the carrier (see 1) and the data together.

3) In telephony, a signal is special data that is used to set up or control communication.In electronics, a signal is an electric current or electromagnetic field used to convey data from one place to another. The simplest form of signal is a direct current (DC) that is switched on and off; this is the principle by which the early telegraph worked. More complex signals consist of an alternating-current (AC) or electromagnetic carrier that contains one or more data streams.

Data is superimposed on a carrier current or wave by means of a process called modulation. Signal modulation can be done in either of two main ways: analog and digital. In recent years, digital modulation has been getting more common, while analog modulation methods have been used less and less. There are still plenty of analog signals around, however, and they will probably never become totally extinct.

Except for DC signals such as telegraph and baseband, all signal carriers have a definable frequency or frequencies. Signals also have a property called wavelength, which is inversely proportional to the frequency.

2) In some information technology contexts, a signal is simply "that which is sent or received," thus including both the carrier (see 1) and the data together.

3) In telephony, a signal is special data that is used to set up or control communication.In electronics, a signal is an electric current or electromagnetic field used to convey data from one place to another. The simplest form of signal is a direct current (DC) that is switched on and off; this is the principle by which the early telegraph worked. More complex signals consist of an alternating-current (AC) or electromagnetic carrier that contains one or more data streams.

Data is superimposed on a carrier current or wave by means of a process called modulation. Signal modulation can be done in either of two main ways: analog and digital. In recent years, digital modulation has been getting more common, while analog modulation methods have been used less and less. There are still plenty of analog signals around, however, and they will probably never become totally extinct.

Except for DC signals such as telegraph and baseband, all signal carriers have a definable frequency or frequencies. Signals also have a property called wavelength, which is inversely proportional to the frequency.

2) In some information technology contexts, a signal is simply "that which is sent or received," thus including both the carrier (see 1) and the data together.

3) In telephony, a signal is special data that is used to set up or control communication.